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Abstract

We investigated the effectiveness of video understanding
through a case study of golf swing event sequencing on the
GolfDB dataset. The performance of sequencing on spa-
tial dimension only via static image classification is com-
pared with the performance of sequencing with both spa-
cial and temporal information. The static image classi-
fication model is implemented by fine-tuning a pretrained
network. The sequence model extends the fine-tuned model
with a customized transformer encoder to capture the tem-
poral context. The result shows static image classification
yields strong baseline results at 71.5% PCE. Incorporating
temporal information further improves performance signifi-
cantly, increasing PCE to 78.1%. We conclude the temporal
component is critical in achieving better results in video un-
derstanding for this task. Our source code is publicly avail-
able at https://github.com/yanmingzhu/cs231n-golf.git.

1. Introduction

Video understanding is a challenging problem in com-
puter vision. While static image classification has made
strides in the years past, video understanding hasn’t pro-
gressed as fast. As experienced in Karpathy [3], static im-
age classification used in video applications usually yields
strong baseline results, but performance gains from incor-
porating additional temporal component may be minimal.

We want to study this problem in a specific domain: golf
event sequencing. A correct swing form is critical to the
performance of a golf player. Our task is to identify eight
events that comprise the swing sequence using computer
vision. One of the previous works in this field is GolfDB
[1], which provides a dataset consisting of 1,400 short video
clips of golf swings with event labels. This problem is par-
ticularly interesting to us because it poses a significant chal-
lenge for the image classification model, which may result
in a gap in performance that a static image model may not
be able to overcome. We aim to determine whether a se-

quence model with the help of a temporal component may
be able to fill this gap.

2. Problem Statement
A swing sequence consists of the following consecutive

8 events, as defined in McNally [7].

• Address (A). The moment just before backswing
starts.

• Toe-up (TU). Club parallel with ground.

• Mid-backswing (MB). Arm parallel with ground.

• Top (T). The moment when backswing changes to
downswing.

• Mid-downswing (MD). Arm parallel with ground.

• Impact (I). Club hitting the golf ball.

• Mid-follow-through (MFT). Club parallel with the
ground during the follow-through.

• Finish (F). The moment before the player relaxes.

A TU MB T

MD I MFT F

Figure 1. Visualization of the Eight Events

The goal of the model is to identify the frames associ-
ated with each event, where an event is associated with one
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frame only. For one video clip, we expect one event for each
event type and the rest are considered non-event frames.

To identify the frame of an event, we may use image clas-
sification based on the pixel value of each frame only. This
is a fine approach and may produce strong baseline results
as seen in later sections. However, there is also an inherent
limitation as image classification looks into one frame only
without taking into consideration its relationship with other
frames.

Figure 2 shows the event of a single full swing together
with their neighboring two frames before and after. For
event “I”, it can be seen that there is considerable differ-
ences between the event frame and its neighbors. Intuitively
these differences may provide good heuristics for image
classification to perform well.

On the other hand, for type “A” and “F”, and to a less de-
gree type “T”, their event frames are virtually indistinguish-
able from their neighbors. The challenge coming from these
event types is the result of the player staying still, which
produce multiple frames of highly similar images. From
image classification point of view, these frames don’t pro-
vide enough separation among them for the model to make
correct decisions. It’s highly possible image classification
models may struggle with these event types.

3. Related Work

McNally [7] introduced the GolfDB dataset and a refer-
ence implementation SwingNet. The GolfDB dataset con-
sists of 1400 short video clips of golf swings of professional
golf players. The SwingNet combines a CNN with a bi-
directional LSTM to achieve a 76% accuracy detecting the
swing events. This paper also proposed PCE as a metric to
evaluate the performance for this task.

Hajian [2] trained a SwingNet with rotation augmenta-
tion and used it together with another model to compare
the swing of two players. It achieved a slightly higher PCE
score of 72.5% compared to the pretrained SwingNet model
of 71.5%.

Zhang [11] is a more recent work on this problem and ap-
peared to have achieved stronger results. The key ideas be-
hind its approach include an attention mechanism to fuse the
temporal information. Additionally it introduced a Gaus-
sian kernel for soft label generation to help better differenti-
ate frames that are visually similar. It achieved an accuracy
of 83.4% which is much higher than the previous works.

Liu [5] attempted to evaluate the quality of a golf swing
by analyzing human body key points. Though not directly
on GolfDB, this work is interesting to us since it suggests a
correlation between golf swing and human body key points.
As a result of this work, we hypothesize that incorporating
human pose features may help improve the accuracy of pre-
diction.

Similarly Ko [4] is a CNN and bi-LSTM golf swing anal-
ysis work that focuses on the correct form of a golf swing.
The main approach is analyzing the angles and twist of the
upper body, head, shoulder and pelvis.

4. Dataset
We use the GolfDB dataset introduced in McNally [7].

A total of 1400 short video clips are collected from 580
YouTube videos. They contain a mixture of videos with
regular and slow-motion, male and female players, differ-
ent face angles, and various club types. Each video clip is
also annotated by human annotators and reviewed by expe-
rienced golf players. Each of the eight events is annotated
with its exact frame within the clip. There are also addi-
tional annotations such as bounding boxes which we won’t
be using in our study.

Among the 1400 clips, 1050 are used for training and
the remaining 350 are used for final evaluation. Due to the
scarcity of the data, the validation dataset is generated by
augmentation.

4.1. Preprocessing

The video clips from GolfDB are cropped from the orig-
inal video. Each frame of the video has the size of 160 in
height and 160 in width.

Since we experimented a lot of image classification mod-
els that are pretrained on the ImageNet dataset, we prepro-
cess each video frame by resizing it to 224 in height and
width, which is the standard size ImageNet. We further nor-
malize each image by the mean and standard deviation of
the ImageNet dataset.

4.2. Class Weighting

Our cross entropy loss function expects 9 classes which
includes eight classes corresponding each of the 8 event
types, and one additional class non-event class designating
a frame absent of any event.

Each video clip contains about 281 frames, where eight
of them are assigned to the eight event classes, and the rest
are assigned to the non-event classes. Unfortunately this
means our class model is highly unbalanced, with the non-
event class far outweighs any of the other events. A regular
cross entropy loss function likely will yield sub-optimal re-
sults.

4.3. Data Sampling

Each video clip has 283 frames on average in our dataset.
Clearly it requires multiple sequences to finish each video
clip. It also means we cannot make any assumption about
the starting frame of the sequence during final evaluation as
it may start from anywhere depending on how the frames
are chunked.
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Figure 2. The difficulty of static classification. Each row contains the frame of an event and the
two frames before and after. Row “A” and “F” show striking resemblance between all frames.

GolfDB comes with a customized dataloader that sam-
ples the starting position of a sequence, which we consider a
good choice as it’s commonplace in action recognition [1].
However the dataloader also doesn’t take into account the
end of the video clip. If it encounters the end of the video
when constructing a sequence, it simply wraps around to

the start of the video.

This loop around approach isn’t a problem for image
classification models but it has large implications on our
sequence models. In real word or evaluations however, the
frames are not loop over. The bias introduced by the loop
simply doesn’t generalize. We consider it a better choice
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to stop at the end of the video clip, and leverage padding
masks to fill out the rest of the sequence.

We started out with regular class weighting based on the
formula

wc =
N

k · nc

, where N is the total number of labels, k is the number of
classes, and nc is the number of samples for class c. How-
ever, the resulting weight as shown in Table 1 is too extreme
where an event class weight that is 320 times higher than the
non-event class. To smooth out the class weight, we use a
smoothed version of logged class weight below, where µ is
a constant factor set to 0.3.

log wc =
log

(
µ · max(n)

nc
+ 1

)
maxc log

(
µ · max(n)

nc
+ 1

)
5. Methods

We begin with an image classification model that entirely
based on its prediction on the pixel values of a single frame
image. We want to use this model as a baseline for us to
compare test results against, as well as a building block for
the sequence model we’ll build later.

Since this task is about human sports, we hypothesize
there is correlation between human pose and the event type.
As a second attempt, we want to try if an image classifica-
tion based on human pose would yield better results than
from pixel value alone.

Finally, we build a sequence model to capture the re-
lationship among the frames. This approach is previously
taken by McNally [7] with an bidirectional LSTM model.
Since LSTM performance degrades as sequence length
grows, we want to use attention based transformer model
that may scales better with the sequence length.

5.1. Image Classification with ConvNeXt

This approach seeks to fine-tune a pretrained image clas-
sification model with the GolfDB dataset. Our choice of the
model weights equally on performance and efficiency. Per-
formance wise we want the model to give us a strong base-
line to start with without being the bottleneck when incorpo-
rated to the sequence model. Since we expect the sequence
model to be considerably more difficult to train in terms of
its computing resources required, we also want the model to
be lightweight and efficient without taking resources away
from the sequence model.

Initially we tested a ViT base 16 model. While it per-
forms decently, it’s more difficult to train with the trans-
former sequence model. In comparison, ResNet family
models are much easier to train.

Eventually we found ConvNeXt [5] Tiny is a better
choice. ConvNeXt is a modernized ResNet type model that

takes inspiration from ViT. It retains the ease of training
from ResNet that we found very attractive while providing
significant performance improvement over ResNet. For ex-
ample, ConvNeXT Tiny scores 82.1% top 1 accuracy com-
pared to ResNet 50’s 76.1% on ImageNet.

To fine-tune the ConvNeXt model, we replaced its clas-
sifier head with a linear layer that projects to 9 dimensions
corresponding to the 9 event classes. We also enabled train-
ing the rest of the classifier layer, and its “7.2” layer.

5.2. Image Classification with Pose Estimation

Golf swing is a human-centered action. A generic im-
age classification model is generally trained on a diversified
dataset of images, with no focus on human action. As an
attempt to improve the performance over the simple image
classification approach, we want to test if it’s helpful to feed
the model with additional human pose data. The hypothesis
is that the human body position and pose is correlated with
the movement of the swing action, and may shed light on
the exact phase during which the swing is taking place.

To extract the human pose key points, we considered a
few models including ViTPose [10], WHAM [8], and Yolo-
pose [6]. Both VitPose and WHAM require considerable
effort to integrate into our model while Yolo-pose is rela-
tively simple. Yolo-pose performs both object detection and
pose estimation. The model returns both the bounding box
of the detected object and the key points associated with the
object that’s necessary for pose estimation.

To fine-tune this model, we project the output from Yolo-
pose into a 780 dimension vector, which is then used as an
input to a linear classifier that produces the class logits.

Figure 3 illustrates a sample frame where the bounding
box and key points are extracted.

Figure 3. An example of bounding box and key points captured by
Yolo-pose

5.3. Sequence Model

As stated previously, image classification may perform
well on some event types such as “MD”, “I” and “MFT”,

4



Event A TU MB T MD I MFT F Non-event
Count 1400 1400 1400 1400 1400 1400 1400 1400 394177

Class Weighting 32 32 32 32 32 32 32 32 0.1
Log Class Weighting 1 1 1 1 1 1 1 1 0.059

Table 1. A comparison of regular class weighting and log class weighting

where the action is swift and event frame differs visu-
ally from its neighboring frames. On the other hand, it
may struggle on some other event types such as “A”, “T”,
and “F”, where the player stays relatively still, and mul-
tiple frames are generated with similar visuals. For these
event types, it’s very difficult to improve the accuracy by
simply improving the image classification models as there
isn’t enough data for the model to make better predictions.
To overcome the limitation that’s inherent with prediction
based on a single frame, we need to go beyond image clas-
sification and capture the relationships among the frames.

For example, while event type “T” is a relatively difficult
one for image classification, the event is always sandwiched
between event “MB” and “MD”. If the sequence model is
able to capture this relationship, better prediction may be
achieved over image classification models.

LSTM used by McNally [7] is a reasonable choice of se-
quence model at the time. But we want to see if transformer
models would perform better over LSTM. There are two
reasons that lead to our preference on transformer. First,
LSTM doesn’t scale to long sequences. A typical swing se-
quence on our dataset is around 1 second which takes about
32 frames in a real time video, but it would be much longer
in a slow motion video. Secondly, we hypothesize the atten-
tion mechanism enables the model to capture more mean-
ingful relationships between swing frames than the “sum-
marization” that an LSTM uses to represent a sequence.

One of the critical considerations of the attention is the
positional embedding. In our use case, the absolute position
of each frame isn’t nearly as important as the relative posi-
tion between the events. For example, the model shouldn’t
care if the swing starts at frame 0 or frame 10, but it might
find it helpful to know that “T” always follows “MB” in a
few frames, and leads “MD” in another number of frames.

Our choice of relative position embedding is RoPE [9].
RoPE is a rotary positional embedding used by a few large
LLMs. It’s effective and easy to implement. Due to the
lack of support from PyTorch on RoPE at the time of this
writing, we implemented RoPE with the help of ChatGPT in
our code base. The RoPE implementation is encapsulated in
a customized transformer encoder layer and integrated into
the PyTorch transformer encoder.

We use the fine-tuned ConvNeXt model as a feature ex-
tractor for the sequence model. The weights of ConvNeXt
is obtained from our training of the image classification

where ConvNeXt has already been trained with the GolfDB
dataset and achieved good result. We removed the final
layer of the classification head and feed the output of the
last hidden layer to the sequence model. This representa-
tion contains rich embeddings by ConvNeXt that’s already
effective in this task.

Frame 1 Frame 2 ... Frame
96

ConvNeXt ConvNeXt ConvNeXt ConvNeXt

RoPE Position Embedding

Transformer Encoder (6 layers)

Event 1 Event 2 ... Event 96

Figure 4. The transformer encoder based sequence model with 96
time steps and RoPE positional embedding

The sequence model is a transformer encoder that con-
tains six encoding layers with RoPE implementation as il-
lustrated in Figure 4. The sequences is set to 96 time steps,
where each step takes one frame representation from the
ConvNeXt, and outputs a logit of the nine event classes.
Internally, the transformer is configured with 8 heads and
256 in hidden dimension. The choices of these parameters
are both empirical and a compromise with the computing
resource. From our experience six layers scales slightly
better than four layers, and 256 hidden dimension works
slightly better than 128. The choice of 96 time steps is a
compromise between performance and computing limita-
tion. While we want longer sequence to allow the attention
see more relevant frames, longer sequence requires more
memory and significantly more compute, neither of which
we have much to spare. In the end, a length of 96 proved to
be effective while being manageable on an A100 GPU.

5



5.4. Implementation

Our implementation is derived from the SwingNet of
McNally[7] at https://github.com/wmcnally/golfdb. The
codebase includes the data file of the GolfDB database, the
dataloader that reads the datafile and video clips, and im-
plementation of SwingNet. We make heavy use of the dat-
aloader, and some of its training and evaluation utilities.

We also seek help from ChatGPT for the implementation
of RoPE since PyTorch doesn’t provide direct support.

Our own code base focuses on an implementation of
fine-tuned ConvNext model, integration of the human pose
estimation from Yolo-pose, as well as the transformer se-
quence model that’s built upon a customized encoder layer
with RoPE support. Other area of our implementation in-
clude the learning rate schedule, data sampling without
looping and its associated masking, and the general train-
ing framework that allows checkpointing.

6. Evaluation Metric
We use PCE as the evaluation metric introduced in Mc-

Nally [7]. PCE stands for “Percentage of Correct Events”,
measuring the correct prediction of the 8 events listed
above.

To compensate for the variability of human annotation,
the PCE is calculated with a tolerance that’s scaled with
frame rate.

δ = max(⌊n
f
⌉, 1)

where n is the number of frames between Address and Fin-
ish, f is the sampling frequency. Since the average time of
a swing is about 1 second, for regular frame rate of 30 fps,
the δ is 1, meaning a prediction is considered correct if it’s
within 1 frame of the annotation.

7. Experiments
7.1. Hyper Parameters

We need to makes a few decisions on hyper parameters.
Batch size is critical for this task. Our experience shows
when the batch size is too small, training doesn’t converge
due to possible large sample variance. We also don’t want
to set the batch size too large as it takes more compute as
well as exhaust the training set too quickly. The batch size
is set to 22 based on our training experience.

AdamW is chosen over Adam as the optimizer due to its
better regularization which we consider helpful for training
the transformer.

Another critical parameter is learning rate. While Con-
vNext may be more forgiving on learning rate, the trans-
former may be more difficult to learn without the proper
learning rate setup. To improve the stability of training, we
create a learning rate schedule with warm up and cosine

annealing, where during the first 50 iterations the learning
rate is linearly warmed up, and the rest of the training sees
a drop in learning rate according to cosine annealing.

The training is divided into 800 iteration training seg-
ments. Each segment may have different base learning rate
which is summarized in Table 2

800 1600 2400 3200 4000 4800
ConvNext 5e-4 5e-4 5e-4 4e-4 - -
Sequence 2e-4 1e-4 5e-5 4e-5 3e-5 2e-5

Table 2. Base learning rate for each 800 iterations. The real learn-
ing rate is subject to warm-up and cosine annealing.

7.2. Regularization

The dataset size of GolfDB may be considered small in
today’s standards with 1050 training video clips. But since
each video clip contains 283 frames on average, the total
training frame is about 300,000, which is of decent size on
a specific domain. Nonetheless, overfitting is a concern and
take a few regularization measures.

• L2 weight decay: This is provided through AdamW
optimizer. We found its default rate of 1e-2 works well.

• Dropout: In our custimized RoPE enabled transformer
encoder layer, a dropout layer is added just like any
typical transformer layer. The dropout rate is set to 0.1

• Random sampling of starting frame. This is already
part of the GolfDB dataloader behavior. We consider
it provides additional regularization with the noise in-
troduced by randomization.

7.3. Training Classifier with Yolo-pose

While we were able to extract the representation of
bounding box and key points from Yolo-pose output, the
training wasn’t successful. The loss didn’t converge despite
tuning various hyper parameters.

There are a few possible reasons. The feature represen-
tation might be at too high level as they are the final output
ready for post processing. A lower level representation may
suit better for our purpose.

Additionally, the final representation is only about the
information inside the bounding box. Though it captures
all human pose key points, the golf club is missing when it
lands outside the bounding box.

We consider this approach requires more exploration and
research.

7.4. Training ConvNeXt and Transformer

The configuration of the training set up is summarized in
Table 3.
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ConvNeXt ConvNeXt w/
Transformer

ConvNeXt Model
Spec

ConvNeXt Tiny,
ImageNet pre-
trained

GolfDB fine-tuned

Sequence Model
Spec

– 8 heads, 256 hidden
dim

Batch Size 22 22
Sequence Length 32 96
Optimizer AdamW AdamW
Weight Decay 1e-2 1e-2
Dropout None 0.1
Learning Rate See Table 2 See Table 2

Table 3. Training specifications for ConvNeXt and ConvNeXt with
Transformer.

Following the training setup in Table 3, we were able to
successfully train both models in a reasonable amount of
time.

As illustrated in Figure 5, fine-tuning ConvNeXt took
about 2400 iterations before the accuracy tops out at 71.5%.
With an additional 800 iterations of training, the accuracy
didn’t improve and stayed almost the same at 71.4%. We
considered the training converged at this point for fine-
tuning the pretrained ConvNeXt model.

As expected the transformer based sequence model was
more difficult to train. It took 3200 iterations to top out at
78.0%. We further trained the model for another two 800
iterations, which yielded PCE of 77.9% and 78.1% respec-
tively.

0 1,000 2,000 3,000 4,000 5,000

70

75

80

Iteration

PC
E

(%
)

ConvNeXt
ConvNeXt & Transformer
McNally (Not Augmented)

McNally (Augmented)

Figure 5. Model accuracy over training iterations with baseline.

7.5. Result Analysis

Table 4 summarizes the test results of our models to-
gether with other models we mentioned before. Note that
our models were trained with the original video clips with-

out any augmentation due to time constraints. All other
models were trained with augmented data, with SwingNet-
160 trained on both.

Our ConvNeXt model matches Swing-160 (non-
augmented) on overall PCE. Note Swing-160 has both a
MobileNet V2 and a bidirectional LSTM. It shows again
what Karpathy [3] stated that image classification model
can be a very strong baseline for video applications.

The result of our transformer based sequence model
showed strong performance improvement over the Con-
vNeXt model alone, raising PCE from 71.5% to 78.1%. It
also outperformed the Swing-160 in both its augmented and
non-augmented variations. The class-wise PCE gain is visu-
alized in Figure 6. All event types achieved positive gains.

It’s expected that most improvement would come from
event “A”, “T”, and “F” as they have lower PCE in the Con-
vNeXt result. But it’s not without surprise that event type
“T” achieves the most improvement, given it is far better
than “A” and “F” with ConvNeXt already.

One possible explanation is that attention plays a role in
this result. Since event type “T” sits in the middle of the
swing sequence, it’s able to attend to both left and right side
the events. “A” and “F” on the other hand sit at start and end
of the sequence, and is only able to attend to one side.

Despite the significant performance improvement over
the original SwingNet-160, Zhang [11] still have a 5.3%
lead in overall PCE. We will continue investigate whether
data augmentation will fill this gap.

A TU MB T MD I MFT F All
0

10

20

Event Types
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cr

em
en

ta
lP

C
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Figure 6. Class-wise Incremental PCE. Event “T” gained the most
from the seqence model at over 20%. Event “A” and “F” also had
significant gains at 13% and 8% respectively.

8. Conclusion

We considered both the ConvNeXt model and the trans-
former based sequence model perform well. ConvNeXt as
a static image classification model alone matched the per-
formance of the LSTM SwingNet model. The transformer
sequence model achieved significantly higher PCE scores,
highlighting the power of the attention mechanism in un-
derstanding video frame sequences.
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Model Data Augmented A TU MB T MD I MFT F PCE
SwingNet-160 No - - - - - - - - 71.5
SwingNet-160 Yes 31.7 84.2 88.7 83.9 98.1 98.4 97.6 26.5 76.1

Hajian Yes 27.7 80.3 88.0 75.1 97.4 94.6 96.9 20.3 72.5
Zhang Yes 50.0 94.9 93.1 91.4 98.9 99.7 99.4 39.7 83.4

ConvNeXt (Ours) No 18.0 86.6 87.7 68.0 93.1 97.7 96.9 24.0 71.5
Sequence (Ours) No 31.1 88.0 89.4 88.6 98.3 99.4 98.3 32.0 78.1

Table 4. PCE Score Comparison. Our models are trained without data augmentation while most other models are.

However, the performance of the models may be lim-
ited by the training data size. As a follow-up, we plan to
augment the training data and hope to achieve additional
performance gains.
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